ICAR NET 2024-2025 (ICAR NET 45 SOIL SCIENCES 2024)

3.8 (112)

Select Buying Options:

0

Buy Now and Pay Later in EMI's

Eligibility

Master’s degree in Agriculture/ Soil Sciences/ Agricultural Chemistry/ Agricultural Physics with specialization in Soil Physics and Soil and Water Conservation/ Soil Fertility/Soil Microbiology/ Soil Chemistry/ Water Science and Technology. 

Exam Pattern

    Particulars                              Details
1. Mode of ICAR ASRB NET      Online computer based 
2. Nature of the exam                 Objective type
3. Maximum Marks                     150
4. Number of questions              150
5. Duration of exam                    02 hours
6. Marking Scheme                    One mark will be awarded for every correct answer
7. Negative Marking                   0.33 mark will be deducted for every wrong answer

Syllabus

Unit 1: Pedology
Concept of land, soil and soil science. Composition of earth crust and its relationship with soils; Rocks, minerals and other soil forming materials; Weathering of rocks and minerals; Factors of soil formation; Pedogenic processes and their relationships with soil properties; Soil development; Pedon, polypedon, soil profile, horizons and their nomenclature. Soil Taxonomy - epipedons, diagnostic subsurface horizons and other diagnostic characteristics, soil moisture and temperature regimes, categories of the system and their criteria; Interpretation of soil survey data for land capability and crop suitability classifications, Macro-morphological study of soils.
Application and use of global positioning system for soil survey. Soil survey- types, techniques. Soil series- characterization and procedure for establishing soil series, benchmark soils and soil correlations. Study of base maps: cadastral maps, toposheets, aerial photographs and satellite imageries. Use of geographical information system for preparing thematic maps.

Unit 2: Soil Physics
Soil physical constraints affecting crop production. Soil texture - textural classes. Soil structure - classification, soil aggregation and significance, soil consistency, soil crusting, bulk density and particle density of soils and porosity, their significance and manipulation. Soil water- retention and potentials. Soil moisture constants. Movement of soil water - infiltration, percolation, permeability, drainage and methods of determination of soil moisture. Darcy’s law. Thermal properties of soils, soil temperature, Soil air- composition, gaseous exchange, influence of soil temperature and air on plant growth. Soil erosion by water- types, effects, mechanics. Rain erosivity and soil erodibility. Runoff - methods of measurement, factors and management, runoff farming. Soil conservation measures.
Characterization and evaluation of soil and land quality indicators; Causes of land degradation; Management of soil physical properties for prevention/restoration of land degradation; Identification, monitoring and management of waste lands; Land use- land cover mapping and land use planning using conventional and remote sensing techniques; Concept of watershed - its characterization and management.

Unit 3: Soil Chemistry
Chemical composition of soil; Soil colloids - structure, composition, constitution of clay minerals, amorphous clays and other non-crystalline silicate minerals, oxide and hydroxide minerals; Charge development on clays and organic matter; pH-charge relations; Buffer capacity of soils.
Elements of equilibrium thermodynamics, chemical equilibria , electrochemistry and chemical kinetics. Inorganic and organic colloids- surface charge characteristics, diffuse double layer theories, zeta potential stability, coagulation/ flocculation, peptization, electrometric and sorption properties of soil colloid. Soil organic matter¬fractionation, clay-organic interactions. Cation exchange- theories, adsorption isotherms, Donnan-membrane equilibrium concept, clay-membrane electrodes and ionic activity measurement, thermodynamics, anion and ligand exchange- inner sphere and outer-sphere surface complex formation, fixation of oxyanions , hysteresis in sorption-desorption of oxy-anions and anions. Nitrogen, potassium, phosphate and ammonium fixation in soils and management aspects. Chemistry of acid, salt-affected and submerged soils and management aspects.

Unit 4: Soil Fertility
Essential elements in plant nutrition; Nutrient cycles in soil; Transformation and transport of nutrients (Macro and micro nutrients) in soil; Manures and fertilizers; Fate and reactions of fertilizers in soils; Chemistry of production ol different fertilizers; Slow release fertilizers and nitrification retarders; Quality control of fertilizers.
Soil fertility evaluation - soil testing, plant and tissue tests and biological methods; Common soil test methods for fertilizer recommendation; Soil test-crop response correlations; Integrated nutrient management; Use of isotopic tracers in soil research; Nature, properties and development of acid, acid sulphate, saline and alkali and their management; Lime and gypsum requirements of soils; Irrigation water quality - EC, SAR, RSC and specifications. Fertility status of major soil groups of India.
Pollution: types, causes, methods of measurement, standards and management. Heavy metal toxicity and soil pollution; Chemical and bio-remediation of contaminated soils; Soil factors in emission of greenhouse gases; Carbon sequestration in mitigating greenhouse effect; Radio-active contamination of soil.

Unit 5: Soil Microbiology
Soil biota, soil microbial ecology, types of organisms. Soil microbial biomass, microbial interactions, unculturable soil biota. Microbiology and biochemistry of root-soil interface. Phyllosphere. Soil enzymes, origin, activities and importance. Soil characteristics influencing growth and activity of microflora. Microbial transformations of N, P, K, S, Fe and Zn in soil. Biochemical composition and biodegradation of soil organic matter and crop residues. Humus formation. Cycles of important organic nutrients. Biodegradation of pesticides, organic wastes and their use for production of biogas and manures. Biofertilizers - definition, classification, specifications, method of production and role in crop production.
Methods of soil analysis - particle size distribution, bulk and particle density, moisture constants, Modern methods of soil, plant and fertilizer analysis Flame photometry and inductively coupled plasma optical emission spectroscopy; Spectrophotometry - visible, ultra-violet and infrared; Atomic absorption spectrophotometry; Potentiometry and conductimetry; X-ray diffractometry; Mass spectrometry.

Unit 6: Statistics
Experimental designs for pot culture and field experiments; Statistical measures of central tendency and dispersion; Correlation and regression; Tests of significance - t and F tests; Computer use in soil research.

Student's Feedback

(4)

I find its excellent. I appreciate publishing enriching students' knowledge for them to stand out in any competitive exam.

Ashish Singh

(4)

Very informative and course oriented, which benefits all students and those preparing for competitive exams.

Shailesh Kumar

(3)

Best material to inspire many young people who are trying their hardest in competitive exams.

Ajay Mehra

(4)

I've been searching for something like this for a long time. They stand out among others. The author appears to have done extensive research. Students and parents should buy it. It's worth reading.

Satish Kumar

(5)

I've been finding it hard to improve my learning style to use my study time best. There content is exceptionally well written and researched to provide tools and realistic approaches I can now use for the rest of my life. It was fantastic!

Sourav Sinha

(4)

very nice

KAVITA ADHIKARI

(1)

KUSHAL H R

(4)

Sumit Jain

(4)

Pandhiri Kruparani

(3)

ADARSHA B S

(2)

MALLAMMA

(4)

SANKARA ANUSHA

(5)

Mohit Shalikram Janbandhu

(3)

SAKLAIN MUSTHAQ

(4)

Dhanushree HK

(1)

Alok Sahu

(4)

Guptnath Trivedi

(5)

Prafulla Kumar Paul

(4)

Dola sireesha Vanaparthi

(3)

J M KAVANA
Payment Methods