ICAR NET 2024-2025 (ICAR NET 07 PLANT BIOCHEMISTRY 2024)

3.8 (112)

Select Buying Options:

0

Buy Now and Pay Later in EMI's

Eligibility

Master’s degree in Plant Biochemistry/ Agricultural Biochemistry/ Biochemistry with specialization in plants.

Exam Pattern

    Particulars                              Details
1. Mode of ICAR ASRB NET        Online computer based 
2. Nature of the exam                   Objective type
3. Maximum Marks                        150
4. Number of questions                 150
5. Duration of exam                      02 hours
6. Marking Scheme                     One mark will be awarded for every correct answer
7. Negative Marking                    0.33 mark will be deducted for every wrong answer.

Syllabus

Unit 1: Basic Biochemistry and Biomolecules
Scope and importance of biochemistry and molecular biology in plants. Structural and functional organization of prokaryotic and eukaryotic cells, viruses and bacteriophages, cell organelles function and their fractionation. C hemical bonding in biological systems, pH and buffers. Thermodynamics and bioenergetics- concept of entropy, and free energy changes in biological reactions, Redox reactions, Role of high energy phosphates. Biomembranes. Classification structure, chemistry, properties and function of carbohydrates, proteins, lipids and nucleic acids. Components of immune system, Prostaglandins.

Unit 2: Intermediary Metabolism
Anabolism, catabolism and their regulation. Metabolism of carbohydrates - glycolitic pathway, HMP pathway, TCA cycle, glyoxylate pathway and gluconeogenesis. Biological oxidation- electron transfer and oxidative phosphorylation. Lipid metabolism, degradation and biosynthesis of fatty acids, ketogenesis and causes of ketosis. Biosynthesis of sterols and phospholipids. Amino acid metabolism - catabolism of amino acids, transamination and deamination, urea cycle, biosyntheisis of amino acids. Conversion of amino acids into bioactive compounds. Metabolism of nucleic acids-degradation and biosynthesis of purines, pyrimidines and nucleotides. Integration of carbohydrate, lipid and amino acid metabolism. Signal transduction mechanisms. Role of G-proteins, cyclic nucleotides and calcium in transduction. Disorders of lipid, carbohydrate, nucleic acid, amino acid metabolism. Inborn errors of metabolism. Secondary metabolites, biotransfermation and over expression.

Unit 3: Enzymes, Vitamins and Hormones
Major classes of enzymes, general properties, kinetics, active site and its mapping, activation energy and transition state. Mechanisms of enzyme action, inhibition and activation. Coenzymes and cofactors. Isoenzymes and immobilized enzymes. Regulation of enzyme activity, allosteric regulation. Multi substrate reactions, kinetic experiments to determine the mechanism of multi substrate reactions. Isolation, purification and measurement of enzyme activity. Enzyme units. Enzyme engineering. Role of enzymes in agriculture, industry, and medicine. Structure mode of action and metabolic functions of vitamins. Deficiency diseases associated with vitamins. General description of nature hormones and disorders associated with endocrine glands, viz. pituitary, thyroid, adrenal, pancreas and gonads. Peptide and steroid hormones. Phyto hormones - auxins, gibberellins, cytokinins, ethylene, abscisic acid and new plant bio¬regulators like SA, Brassino of .

Unit 4: Molecular Biology
Structure of DNA and RNA Replication, transcription and translation. Post- transcriptional and translational modifications. Transcriptional and translation control of prokaryotes and eukaryotes. Features of genetic code in prokaryotes and eukaryotes. Gene expression - operon model, induction and repression, control of gene expression in prokaryotes and eykaryotes. Chloroplant and Mitochondrial genomes. Replication of viruses. Mutagens, oncogenes and carcinogenesis. General principles of recombinant DNA technology, restriction enzymes. Methods of gene transfer-plasmid and viruses as vectors, DNA and protein sequence analysis, oligonucleotide synthesis, genomic and cDNA library construction, site-directed mutagenesis, transposon tagging, chromosome walking. Basics of genome organization and mapping, functional genomics. Gene silencing. Methods for the development of transgenic organisms. Computer application in molecular biology, primer designing, sequence analysis and phylogenetic analysis. Benefits of gene manipulation in agriculture, nanobiotechnology, bio-chips.

Unit 5: Techniques in Biochemistry
Principles of optical, phase contrast, fluorescence and electron microscopy, spectrophotometry, UV and VIS, fluorimetry, turbidometry and atomic absorption spectrophotometry. Radioisotopic techniques - scintillation • counters and autoradiography and their application in biological sciences. Flectrophoresis - general principles and application, gel electrophoresis, isoelectric focusing, pulsed field gel electrophoresis, immunoelectrophoresis. Chromatographic techniques - paper, thin layer, column chromatography, GC and HPLC. Centrifugation - principles of sedimentation in various rotors, differential centrifugation, density gradient centrifugation and ultracentrifugation. Cell tissue and organ culture. Cryopreservation, PCR and application of RFLP, RAPD, AFLP, microsatellite and mitochondrial and ribotyping techniques. Southern, Northern and Western blotting, ELISA. Microarray and DNA chips. Preliminary methods of statistical analysis as applied to agricultural data - standard deviation, standard error, ANOVA, correlation and regression.

Unit 6: Biochemistry of Food-grains, Fruits and Vegetables
Fundamentals of nutrition, concept of balanced diet. Nutritional quality of protein and its evaluation. Dietary fibre. Vitamins- biochemical functions and deficiency diseases. Fats and lipids-types of fatty acids and their significance in health. Biochemical composition and food value of various food grains (including cerea s, pulses, oil seeds), fruits and vegetables. Biochemistry of fruit ripening, biochemical aspects of post harvest technology, storage and preservation. Biochemical basis of quality improvement of food grains, vegetables and fruits. Antioxidants, nutraceticals. Food toxins and anti-metabolites, food additives, storage proteins.

Unit 7: Photosynthesis
Photosynthesis - photosynthetic pigments, light reactions, photosystems. Photophosphorylation, dark reactions: C3, C4 and CAM pathways. Regulation of Rubisco. Chemisomotic coupling. Carbon cycle and its regulation, Ion fluxes and conformational changes during photosynthesis. Photorespiration. Relationship between photosynthesis, photorespiration and crop productivity. Chloroplasm morphology, structure and biochemical anatomy. Cytosolic and organelle interactions. Nature and exchange of metabolites through translocators. Seed reserve biosynthesis.

Unit 8: Plant Metabolic Processes
Uptake and metabolism of mineral nutrients in plants. Sulphur metabolism. Nitrogen cycle, nitrate and nitrite reduction, denitrification, symbiotic and non-symbiotic nitrogen fixation. Biochemical and physiological role of hydrogenase. Chemoautrotrophy in rhizobia and nitrifying bacteria. Cell cycle. Growth regulation in plants. Signal transduction and phytohormones. Molecular mechanisms of plant growth, hormone action. Role of oligosaccharides and polysaccharides in cellular metabolism. Metabolism of cyanogenic glycosides and glucosinolates.

Unit 9: Plant Molecular Biology
General organization of nuclear, mitochondrial and chloroplast genomes. Genomics and functional genomics. Tissue specific expression of genes. Molecular biology of various stresses - drought, salinity and temperature. Signal transduction and its molecular basis: molecular mechanism of plant hormone action. Structure, organization and regulation of nuclear genes. Genes involved in photosynthesis and nitrogen fixation. Regulation of chloroplast gene expression. Mitochondrial control of fertility. Molecular markers in plants and their uses.

Unit 10: Plant Biotechnology / Genetic Engineering
Totipotency, application of tissue culture for plant improvement, cryopreservation. Protoplasm fusion. General principles of gene cloning. Isolation and characterization of plant genes and promoters. Different methods of gene transfer -direct and vectormediated. Gene silencing. Site directed mutagenesis. Molecular analysis of transformants. Potential applications of plant genetic engineering for crop improvement - insect-pest resistance (insect, viral, fungal and bacterial diseases). Abiotic stress tolerance, herbicide resistance, storage protein quality improvement, increasing shelf- life, oil quality. Biosafety and IPR issues.

Student's Feedback

(4)

I find its excellent. I appreciate publishing enriching students' knowledge for them to stand out in any competitive exam.

Ashish Singh

(4)

Very informative and course oriented, which benefits all students and those preparing for competitive exams.

Shailesh Kumar

(3)

Best material to inspire many young people who are trying their hardest in competitive exams.

Ajay Mehra

(4)

I've been searching for something like this for a long time. They stand out among others. The author appears to have done extensive research. Students and parents should buy it. It's worth reading.

Satish Kumar

(5)

I've been finding it hard to improve my learning style to use my study time best. There content is exceptionally well written and researched to provide tools and realistic approaches I can now use for the rest of my life. It was fantastic!

Sourav Sinha

(4)

very nice

KAVITA ADHIKARI

(1)

KUSHAL H R

(4)

Sumit Jain

(4)

Pandhiri Kruparani

(3)

ADARSHA B S

(2)

MALLAMMA

(4)

SANKARA ANUSHA

(5)

Mohit Shalikram Janbandhu

(3)

SAKLAIN MUSTHAQ

(4)

Dhanushree HK

(1)

Alok Sahu

(4)

Guptnath Trivedi

(5)

Prafulla Kumar Paul

(4)

Dola sireesha Vanaparthi

(3)

J M KAVANA
Payment Methods